Les cours en apprentissage automatique peuvent vous aider à comprendre comment construire, entraîner et analyser des modèles prédictifs. Vous pouvez développer des compétences en préparation des données, choix d'algorithmes, optimisation et évaluation. De nombreux cours utilisent des bibliothèques courantes pour tester des modèles.

Multiple educators
Skills you'll gain: Unsupervised Learning, Supervised Learning, Classification And Regression Tree (CART), Artificial Intelligence and Machine Learning (AI/ML), Applied Machine Learning, Machine Learning, Jupyter, Data Ethics, Decision Tree Learning, Tensorflow, Responsible AI, Scikit Learn (Machine Learning Library), NumPy, Predictive Modeling, Deep Learning, Artificial Intelligence, Reinforcement Learning, Random Forest Algorithm, Feature Engineering, Python Programming
Beginner · Specialization · 1 - 3 Months

Skills you'll gain: Unsupervised Learning, Supervised Learning, Feature Engineering, Applied Machine Learning, Scikit Learn (Machine Learning Library), Machine Learning, Predictive Modeling, Dimensionality Reduction, Regression Analysis, Decision Tree Learning, Classification And Regression Tree (CART), Statistical Modeling
Intermediate · Course · 1 - 3 Months

DeepLearning.AI
Skills you'll gain: Descriptive Statistics, Bayesian Statistics, Statistical Hypothesis Testing, Probability & Statistics, Sampling (Statistics), Probability Distribution, Linear Algebra, Statistical Inference, A/B Testing, Statistical Analysis, Applied Mathematics, NumPy, Probability, Calculus, Dimensionality Reduction, Numerical Analysis, Mathematical Modeling, Machine Learning, Machine Learning Methods, Data Transformation
Intermediate · Specialization · 1 - 3 Months

Skills you'll gain: Exploratory Data Analysis, Unsupervised Learning, Supervised Learning, Feature Engineering, Regression Analysis, Dimensionality Reduction, Time Series Analysis and Forecasting, Reinforcement Learning, Generative Model Architectures, Data Cleansing, Data Access, Deep Learning, Data Analysis, Applied Machine Learning, Predictive Modeling, Statistical Inference, Data Science, Machine Learning Algorithms, Machine Learning, Python Programming
Build toward a degree
Intermediate · Professional Certificate · 3 - 6 Months

Amazon Web Services
Skills you'll gain: Artificial Intelligence and Machine Learning (AI/ML), Generative AI, Deep Learning, Artificial Intelligence, Amazon Web Services, Applied Machine Learning, Machine Learning
Mixed · Course · 1 - 4 Weeks

Imperial College London
Skills you'll gain: Linear Algebra, Dimensionality Reduction, NumPy, Regression Analysis, Calculus, Applied Mathematics, Probability & Statistics, Unsupervised Learning, Machine Learning Algorithms, Jupyter, Data Science, Advanced Mathematics, Statistics, Statistical Analysis, Artificial Neural Networks, Algorithms, Data Manipulation, Python Programming, Derivatives
Beginner · Specialization · 3 - 6 Months

DeepLearning.AI
Skills you'll gain: Supervised Learning, Applied Machine Learning, Jupyter, Scikit Learn (Machine Learning Library), Machine Learning, NumPy, Predictive Modeling, Feature Engineering, Artificial Intelligence, Classification And Regression Tree (CART), Python Programming, Regression Analysis, Statistical Modeling, Data Transformation
Beginner · Course · 1 - 4 Weeks

University of Washington
Skills you'll gain: Regression Analysis, Applied Machine Learning, Feature Engineering, Machine Learning, Image Analysis, Unsupervised Learning, Predictive Modeling, Classification And Regression Tree (CART), Supervised Learning, Bayesian Statistics, Statistical Modeling, Artificial Intelligence, Deep Learning, Data Mining, Computer Vision, Statistical Machine Learning, Predictive Analytics, Text Mining, Machine Learning Algorithms, Big Data
Intermediate · Specialization · 3 - 6 Months

Coursera
Skills you'll gain: Supervised Learning, Unsupervised Learning, Time Series Analysis and Forecasting, Applied Machine Learning, Machine Learning Algorithms, Feature Engineering, Dimensionality Reduction, Machine Learning, Predictive Modeling, Predictive Analytics, Scikit Learn (Machine Learning Library), Forecasting, Data Processing, Anomaly Detection, Data Manipulation, Regression Analysis, Statistical Modeling, Data Transformation, Data Cleansing
Intermediate · Course · 1 - 4 Weeks

DeepLearning.AI
Skills you'll gain: MLOps (Machine Learning Operations), Application Deployment, Continuous Deployment, Software Development Life Cycle, Machine Learning, Applied Machine Learning, Data Validation, Feature Engineering, Data Quality, Continuous Monitoring, Data Pipelines
Intermediate · Course · 1 - 4 Weeks

Skills you'll gain: Responsible AI, Generative AI, Natural Language Processing, Business Intelligence, Content Creation, Risk Mitigation
Beginner · Course · 1 - 4 Weeks

Duke University
Skills you'll gain: MLOps (Machine Learning Operations), Pandas (Python Package), AWS SageMaker, NumPy, Microsoft Azure, Application Deployment, Responsible AI, Data Manipulation, Exploratory Data Analysis, Containerization, Data Pipelines, CI/CD, DevOps, Cloud Computing, Python Programming, Machine Learning, GitHub, Big Data, Data Management, Data Analysis
Advanced · Specialization · 3 - 6 Months
Machine learning is a subset of artificial intelligence that enables systems to learn from data, identify patterns, and make decisions with minimal human intervention. It is important because it drives innovation across various sectors, from healthcare to finance, by automating processes and providing insights that were previously unattainable. As industries increasingly rely on data-driven decision-making, understanding machine learning becomes essential for staying competitive.
A variety of job opportunities exist in the field of machine learning. Positions include machine learning engineer, data scientist, AI researcher, and business intelligence analyst. These roles often require a blend of programming skills, statistical knowledge, and domain expertise. As organizations continue to adopt machine learning technologies, the demand for skilled professionals in this area is expected to grow.
To learn machine learning effectively, you should focus on several key skills. Proficiency in programming languages such as Python or R is crucial, along with a solid understanding of statistics and linear algebra. Familiarity with data manipulation and visualization tools, as well as experience with machine learning frameworks like TensorFlow or PyTorch, will also be beneficial. These skills will provide a strong foundation for your machine learning journey.
There are many excellent online resources for learning machine learning. Notable options include the IBM Machine Learning Professional Certificate and the Machine Learning with Scikit-learn, PyTorch & Hugging Face Professional Certificate. These programs offer structured learning paths and hands-on projects to help you build practical skills.
Yes. You can start learning Machine Learning on Coursera for free in two ways:
If you want to keep learning, earn a certificate in Machine Learning, or unlock full course access after the preview or trial, you can upgrade or apply for financial aid.
To learn machine learning, start by taking introductory courses that cover the basics of algorithms and data analysis. Engage in hands-on projects to apply what you've learned, and gradually progress to more advanced topics. Utilize online resources, participate in forums, and collaborate with peers to enhance your understanding. Consistent practice and real-world application will reinforce your skills.
Typical topics covered in machine learning courses include supervised and unsupervised learning, regression analysis, classification techniques, clustering, and neural networks. Additionally, courses often explore data preprocessing, feature engineering, and model evaluation. Understanding these concepts will equip you with the knowledge needed to tackle various machine learning challenges.
For training and upskilling employees in machine learning, programs like the Applied Machine Learning Specialization are highly effective. These courses focus on practical applications and real-world scenarios, making them suitable for professionals looking to enhance their skills and contribute to their organizations' data-driven initiatives.